195 research outputs found

    The Effect of Different Forms of Synaptic Plasticity on Pattern Recognition in the Cerebellar Cortex

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer.Many cerebellar learning theories assume that long-term depression (LTD) of synapses between parallel fibres (PFs) and Purkinje cells (PCs) provides the basis for pattern recognition in the cerebellum. Previous work has suggested that PCs can use a novel neural code based on the duration of silent periods. These simulations have used a simplified learning rule, where the synaptic conductance was halved each time a pattern was learned. However, experimental studies in cerebellar slices show that the synaptic conductance saturates and is rarely reduced to less than 50% of its baseline value. Moreover, the previous simulations did not include plasticity of the synapses between inhibitory interneurons and PCs. Here we study the effect of LTD saturation and inhibitory synaptic plasticity on pattern recognition in a complex PC model. We find that the PC model is very sensitive to the value at which LTD saturates, but is unaffected by inhibitory synaptic plasticity.Peer reviewe

    Connection Strategies in Associative Memory Models

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer.The problem we address in this paper is that of finding effective and parsimonious patterns of connectivity in sparse associative memories. This problem must be addressed in real neuronal systems, so results in artificial systems could throw light on real systems. We show that there are efficient patterns of connectivity and that these patterns are effective in models with either spiking or non-spiking neurons. This suggests that there may be some underlying general principles governing good connectivity in such networks.Peer reviewe

    An Interneuron Circuit Reproducing Essential Spectral Features of Field Potentials

    Get PDF
    This document is the Accepted Manuscript version of the following article: Reinoud Maex, ‘An Interneuron Circuit Reproducing Essential Spectral Features of Field Potentials’, Neural Computation, March 2018. Under embargo until 22 June 2018. The final, definitive version of this paper is available online at doi: https://doi.org/10.1162/NECO_a_01068. © 2018 Massachusetts Institute of Technology. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Recent advances in engineering and signal processing have renewed the interest in invasive and surface brain recordings, yet many features of cortical field potentials remain incompletely understood. In the present computational study, we show that a model circuit of interneurons, coupled via both GABA(A) receptor synapses and electrical synapses, reproduces many essential features of the power spectrum of local field potential (LFP) recordings, such as 1/f power scaling at low frequency (< 10 Hz) , power accumulation in the Îł-frequency band (30–100 Hz), and a robust α rhythm in the absence of stimulation. The low-frequency 1/f power scaling depends on strong reciprocal inhibition, whereas the α rhythm is generated by electrical coupling of intrinsically active neurons. As in previous studies, the Îł power arises through the amplifica- tion of single-neuron spectral properties, owing to the refractory period, by parameters that favour neuronal synchrony, such as delayed inhibition. The present study also confirms that both synaptic and voltage-gated membrane currents substantially contribute to the LFP, and that high-frequency signals such as action potentials quickly taper off with distance. Given the ubiquity of electrically coupled interneuron circuits in the mammalian brain, they may be major determinants of the recorded potentials.Peer reviewe

    Stability Analysis of Asynchronous States in Neuronal Networks with Conductance-Based Inhibition

    Get PDF
    Oscillations in networks of inhibitory interneurons have been reported at various sites of the brain and are thought to play a fundamental role in neuronal processing. This Letter provides a self-contained analytical framework that allows numerically efficient calculations of the population activity of a network of conductance-based integrate-and-fire neurons that are coupled through inhibitory synapses. Based on a normalization equation this Letter introduces a novel stability criterion for a network state of asynchronous activity and discusses its perturbations. The analysis shows that, although often neglected, the reversal potential of synaptic inhibition has a strong influence on the stability as well as the frequency of network oscillations

    Proximity effects and Andreev reflection in mesoscopic SNS junction with perfect NS interfaces

    Full text link
    Low temperature transport measurements on superconducting film - normal metal wire - superconducting film (SNS) junctions fabricated on the basis of 6 nm thick superconducting polycrystalline PtSi films are reported. The structures with the normal metal wires of two different lengths L=1.5 Ό\mum and L=6Ό\mum and the same widths W=0.3Ό\mum are studied. Zero bias resistance dip related to pair current proximity effect is observed for all junctions whereas the subharmonic energy gap structure originating from phase coherent multiple Andreev reflections have occurs only in the SNS junctions with short wires.Comment: ReVTex, 4 pages, 4 eps figures include

    Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine

    Get PDF
    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4ÎČ2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.Peer reviewe

    Dendritic Morphology Predicts Pattern Recognition Performance in Multi-compartmental Model Neurons with and without Active Conductances

    Get PDF
    This is an Open Access article published under the Creative Commons Attribution license CC BY 4.0 which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is citedIn this paper we examine how a neuron’s dendritic morphology can affect its pattern recognition performance. We use two different algorithms to systematically explore the space of dendritic morphologies: an algorithm that generates all possible dendritic trees with 22 terminal points, and one that creates representative samples of trees with 128 terminal points. Based on these trees, we construct multi-compartmental models. To assess the performance of the resulting neuronal models, we quantify their ability to discriminate learnt and novel input patterns. We find that the dendritic morphology does have a considerable effect on pattern recognition performance and that the neuronal performance is inversely correlated with the mean depth of the dendritic tree. The results also reveal that the asymmetry index of the dendritic tree does not correlate with the performance for the full range of tree morphologies. The performance of neurons with dendritic tapering is best predicted by the mean and variance of the electrotonic distance of their synapses to the soma. All relationships found for passive neuron models also hold, even in more accentuated form, for neurons with active membranesPeer reviewedFinal Published versio

    Quantitative Organization of GABAergic Synapses in the Molecular Layer of the Mouse Cerebellar Cortex

    Get PDF
    In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies to quantitatively assess the ratio of GABAergic synapses on Purkinje cell dendrites versus those on interneurons. We generated a mouse model in which the GABAA receptor α1 subunit (GABAARα1) was selectively removed from Purkinje cells using the Cre/loxP system. Deletion of the α1 subunit resulted in a complete loss of GABAAR aggregates from Purkinje cells, allowing us to determine the density of GABAAR clusters in interneurons. In a complementary approach, we determined the density of GABA synapses impinging on Purkinje cells using α-dystroglycan as a specific marker of inhibitory postsynaptic sites. Combining these inverse approaches, we found that synapses received by interneurons represent approximately 40% of all GABAergic synapses in the molecular layer. Notably, this proportion was stable during postnatal development, indicating synchronized synaptogenesis. Based on the pure quantity of GABAergic synapses onto interneurons, we propose that mutual inhibition must play an important, yet largely neglected, computational role in the cerebellar cortex
    • 

    corecore